
Information Sciences 177 (2007) 264–280

www.elsevier.com/locate/ins
A self-constructing fuzzy CMAC model and its applications

Chi-Yung Lee a, Cheng-Jian Lin b,*, Huei-Jen Chen b

a Department of Computer Science and Information Engineering, Nankai Institute of Technology, Nantou 542, Taiwan, ROC
b Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413, Taiwan, ROC

Received 7 April 2004; received in revised form 8 February 2006; accepted 20 March 2006
Abstract

This work presents a self-constructing fuzzy cerebellar model articulation controller (SC-FCMAC) model for various
applications. A self-constructing learning algorithm, which consists of the self-clustering method (SCM) and the back-
propagation algorithm, is presented. The proposed SCM scheme is a rapid, one-pass algorithm which dynamically esti-
mates the number of hypercube cells in input data space. The clustering method does not require prior knowledge, such
as the number of clusters in a data set. The back-propagation algorithm is applied to tune the adjustable parameters. Sim-
ulation results are obtained to show the performance and applicability of the proposed model.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The cerebellar model articulation controller (CMAC) [2,3], developed by Albus, is a simple network archi-
tecture which provides the advantages of fast learning and a high convergence rate. The CMAC model has
been successfully applied to various fields, such as robot control [11,29,30], signal processing [19], pattern rec-
ognition [9], and diagnosis [13,36]. However, Albus’ CMAC model has three major limitations [2,3]. First, the
CMAC model requires a very large amount of memory to solve high-dimensional problems [30]. Therefore,
the choice of the clustering approach in the CMAC model is important because partition-based clustering
methods, including fuzzy C-means (FCM) [14,24,28], linear vector quantization (LVQ) [1,12], fuzzy Kohonen
partitioning (FKP), and pseudo-FKP [4], are used in cluster analysis. However, the above clustering tech-
niques depend on prior knowledge, such as the number of clusters in a data set. Online-based cluster tech-
niques [17,34] have been presented to solve this problem. However, these methods [17,34] have a problem:
they consider only the total variations of the mean and deviation in all dimensions per input because the num-
ber of clusters increases rapidly.
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The second limitation of the CMAC model is that it requires a more rigorous theory for function approx-
imation. Thus, several modifications of Albus’ CMAC model using B-spline functions [37] or fuzzy concepts
[5,7,10,18,23,38] have been made to improve its approximation capability. The basis function in the CMAC
model is a binary box function. Input vectors that fall into the same block will produce the same output from
the network. Therefore, the CMAC model’s output is usually not as smooth as the target function. B-spline
basis functions have been developed to enable the different input vectors that fall in the same block to generate
different outputs in the basis function layer [37]. Many researchers have integrated the fuzzy concept into the
CMAC network [5,10,18,23,38]. They use membership functions rather than basis functions, and the resulting
structure is called fuzzy CMAC (FCMAC).

The third limitation is the difficulty with which the CMAC model selects the parameters of the memory
structure [6,15,22]. Chow and Menozzi [6] proposed a self-organizing CMAC network controller based on
competitive learning. This method uses Kohonen’s concept of adapting the CMAC configuration to match
the input distribution. Hu and Pratt [15] applied a clustering technique to reduce the memory required by
the CMAC network. They successfully demonstrated the self-organizing CMAC network and the Lyapunov
function-based unsupervised learning scheme. Lee et al. [22] proposed a self-organizing input space module
that employed Shannon’s entropy measure and the golden-section search method to quantize the input space
according to the various distributions of the training data sets. These methods [6,15,22] all involve off-line
learning.

This work presents a new self-constructing fuzzy cerebellar model articulation controller (SC-FCMAC) for
identification, classification, and control problems. A Gaussian basis function is used to model a hypercube
structure and its fuzzy weight. A self-constructing learning algorithm, which consists of the input space par-
tition scheme and the parameter-learning scheme, is proposed for constructing and training the proposed SC-
FCMAC model. The input space partition scheme is based on the self-clustering method (SCM) to determine
the appropriate distributions of the input training data. The proposed SCM does not require prior knowledge,
such as the number of clusters in a data set. A gradient-descent learning algorithm is applied to adjust simul-
taneously the free parameters in the receptive field functions and the fuzzy weights to minimize the output
error function. Moreover, the proposed SC-FCMAC model can effectively solve problems associated with
the required memory and the ability of function approximation. Simulation results demonstrate that the pro-
posed SC-FCMAC model outperforms some of the other existing models.

2. The structure of the SC-FCMAC model

2.1. The traditional CMAC model

The traditional CMAC model [2] has fast learning ability and good local generalization capability for
approximating nonlinear functions. The basic idea for using the CMAC model is to store learned data in over-
lapping regions in a way that the data can easily be recalled yet use less storage space. The action of storing
weight information in the CMAC model is similar to that of the cerebellum in humans. Take a two-dimen-
sional (2-D) input vector, or the so-called two-dimensional CMAC (2-D CMAC), as an example. The struc-
ture of a 2-D CMAC is shown in Fig. 1. The input vector is defined by two input variables, s1 and s2, which are
quantized into three discrete regions, called blocks. It is noted that the width of the blocks affects the gener-
alization capability of the CMAC. In the first method of quantization, the variable s1 is divided into blocks A,
B, and C, and the variable s2 is divided into blocks a, b, and c. The areas Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, and
Cc formed by quantized regions are called hypercubes. When each block is shifted by a small interval, different
hypercubes can be obtained. In Fig. 1, there are 27 hypercubes used to distinguish 49 different states in the 2-D
CMAC. For example, let the hypercubes Bb, Ee, and Hh be addressed by the state (s1, s2) = (3,3). Only these
three hypercubes are set to 1, and the others are set to 0.

2.2. The self-constructing fuzzy CMAC (SC-FCMAC) model

In this paper, we propose a self-constructing fuzzy CMAC (SC-FCMAC) model. The SC-FCMAC model
[26], illustrated in Fig. 2, consists of the input space partition, association memory selection, and
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defuzzification. The SC-FCMAC model is like the traditional CMAC model that approximates a nonlinear
function y = f(x) by using two primary mappings:
S : X ) A ð1Þ
P : A ) D ð2Þ
where X is an s-dimensional input space, A is an NA-dimensional association space, and D is a 1-D output
space. These two mappings are realized by using fuzzy operations. The function S(x) maps each point x in
the input space onto an association vector a = S(x) 2 A that has NL nonzero elements (NL < NA). Here,
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a ¼ ða1; a2; . . . ; aNAÞ, where 0 6 a 6 1 for all components in a is derived from the composition of the receptive
field functions and sensory inputs. Different from the traditional CMAC model, several hypercubes are ad-
dressed by the input state x. The hypercube values are calculated by product operation through the strength
of the receptive field functions for each input state.

In the SC-FCMAC model, we use the Gaussian basis function as the receptive field function and the fuzzy
weight function for learning. Some learned information is stored in the fuzzy weight vector. The 1-D Gaussian
basis function can be given as follows:
lðxÞ ¼ e�ððx�mÞ=rÞ2 ð3Þ

where x represents the specific input state, m represents the corresponding center, and r represents the corre-
sponding variance.

Let us consider a ND-dimensional problem. A Gaussian basis function with ND dimensions is given as
follows:
aj ¼
YND

i¼1

e�ððxi�mijÞ=rijÞ2 ð4Þ
where
Q

represents the product operation, aj represents the jth element of the association memory selection
vector, xi represents the input value of the ith dimension for a specific input state x, mij represents the center
of the receptive field functions, rij represents the variance of the receptive field functions, and ND represents
the number of the receptive field functions for each input state. The function P(a) computes a scalar output y

by projecting the association memory selection vector onto a vector of adjustable fuzzy weights. Each fuzzy
weight is inferred to produce a partial fuzzy output using the value of its corresponding association memory
selection vector as the input matching degree. The fuzzy weight is considered here so that the partial fuzzy
output is defuzzified into a scalar output using standard volume-based centroid defuzzification [21,33]. The
term volume is used in a general sense to include multi-dimensional functions. For 2-D functions, the volume
reduces to the area. If vj is the volume of the consequent set and nj is the weight of the scale aj, then the general
expression for defuzzification is
y ¼
PNL

j¼1ajwm
j mjnjPN L

j¼1ajmjnj

ð5Þ
where wm
j is the mean value of the fuzzy weights and NL is the number of hypercube cells. The volume vj in this

case is simply the area of the consequent weights, which are represented by Gaussian fuzzy sets. Therefore,
vj ¼ wr

j

ffiffiffi
p
p

, where wr
j represents the variance of the fuzzy weights. If the weight nj is considered to be one,

as in this work, then the actual output y is derived as follows:
y ¼
PNL

j¼1ajwm
j wr

jPN L
j¼1ajwr

j

ð6Þ
3. A self-constructing learning algorithm for the SC-FCMAC model

In this section, a self-constructing learning algorithm, which consists of an input space partition scheme and
a parameter-learning scheme, is presented for constructing the SC-FCMAC model. First, the input space par-
tition scheme is used to determine proper input space partitioning and to find the mean and the width of each
receptive field function. This scheme is based on the self-clustering method (SCM) to appropriately determine
the various distributions of the input training data. Second, the parameter-learning scheme is based on the
gradient descent learning algorithm. To minimize a given cost function, the receptive field functions and
the fuzzy weights are adjusted using the back-propagation algorithm. According to the requirements of the
system, these parameters will be given proper values to represent the memory information. For the initial sys-
tem, the values of the tuning parameters wm

j and wr
j of the fuzzy weights are generated randomly, and the m

and r of the receptive field functions are generated by the proposed SCM clustering method.
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3.1. The input space partition scheme

The receptive field functions can map input patterns. Hence, the discriminative ability of these new features
is determined by the centers of the receptive field functions. To achieve good classification, centers are best
selected based on their ability to provide large class separation.

An input space partition scheme, called the self-clustering method (SCM), is proposed to implement scatter
partitioning of the input space. Without any optimization, the proposed SCM is a fast, one-pass algorithm for
a dynamic estimation of the number of hypercube cells in a set of data, and for finding the current centers of
hypercube cells in the input data space. It is a distance-based connectionist-clustering algorithm. In any hyper-
cube cell, the maximum distance between an example point and the hypercube cell center is less than a thresh-
old value, which has been set as a clustering parameter and which would affect the number of hypercube cells
to be estimated.

In the clustering process, the data examples come from a data stream, and the process starts with an empty
set of hypercube cells. When a new hypercube cell is created, the hypercube cell center, C, is defined, and its
hypercube cell distance and hypercube cell width, Dc and Wd, respectively, are initially set to zero. When more
samples are presented one after another, some created hypercube cells will be updated by changing the posi-
tions of their centers and increasing the hypercube cell distances and hypercube cell width. Which hypercube
cell will be updated and how much it will be changed depends on the position of the current example in the
input space. A hypercube cell will not be updated any more when its hypercube cell distance, Dc, reaches the
value that is equal to the threshold value Dthr.
Fig. 3. A brief clustering process using the SCM with samples P1 to P9 in a 2-D space. (a) The example P1 causes the SCM to create a new
hypercube cell center C1. (b) P2: update hypercube cell center C1, P3: create a new hypercube cell center C2, P4: do nothing. (c) P5: update
hypercube cell C1, P6: do nothing, P7: update hypercube cell center C2, P8: create a new hypercube cell C3. (d) P9: update hypercube cell
C1.
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Fig. 3 shows a brief clustering process using the SCM in a two-input space. The detailed clustering process
is as follows:

Step 1: Create the first hypercube cell by taking the position of the first example from the input stream as the
first hypercube cell center C1 and setting its hypercube cell distance Dc1 and hypercube cell width
Wd1_x and Wd1_y to zero, as shown in Fig. 3(a).

Step 2: If all examples of the data stream have been processed, the algorithm is finished. Otherwise, the cur-
rent input example Pi is taken and the distances between this example and all n already created hyper-
cube cell centers Cj, Distij = kPi � Cjk, j = 1,2, . . . ,n, are calculated.

Step 3: If there is any distance value Distij equal to, or less than, at least one of the distance Dcj, j = 1,2, . . . ,n,
it means that the current example Pi belongs to a hypercube cell Cm with the minimum distance
Distim ¼ kP i � Cmk ¼ minðkP i � CjkÞ; j ¼ 1; 2; . . . ; n ð7Þ
In this case, neither a new hypercube cell is created, nor any existing hypercube cell is updated, as in
the cases of P4 and P6 shown in Fig. 3, for example. The algorithm then returns to Step 2. Otherwise,
go to the next step.
Step 4: Find a hypercube cell with center Cm and hypercube cell distance Dcm from all n existing hypercube
cell centers by calculating the values Sij = Wdij + Dcj, j = 1,2, . . . ,n, and then choosing the hypercube
cell center Cm with the minimum value Sim:
Sim ¼ Wdim þ Dcm ¼ minðSijÞ; j ¼ 1; 2; . . . ; n ð8Þ
In Eq. (7), the maximum distance from any hypercube cell mean to the examples that belong to this
hypercube cell is not greater than the threshold Dthr, though the algorithm does not keep any infor-
mation on passed examples. However, we find that the formulation only considers the distance be-
tween the input data and the hypercube cell mean in Eq. (8). This special situation indicates that
the distances between the given point P11 and both hypercube cell means Dc1 and Dc2 are the same,
as shown in Fig. 4. In the aforementioned techniques [17,34], the hypercube cell C2, which has small
dimension distances D2_x, will be selected for expansion according to Eq. (8). However, this causes the
problem of the hypercube cell numbers increasing quickly. To avoid this problem, we give the follow-
ing rule:
If (the distance between P11 and Dc1 is equal to the distance between P11 and Dc2) and (D1_x > D2_x),
then Dim = Dc1.
In the above rule, we find that when the distances between the input data and both hypercube cells are
the same, the formulation will choose the hypercube cell that has large dimension distances D1_x.
Step 5: If Sim is greater than Dthr, the example Pi does not belong to any existing hypercube cells. A new
hypercube cell is created in the same way as described in Step 1, as in the cases of P3 and P8 shown
in Fig. 3, and the algorithm returns to Step 2.

Step 6: If Sim is not greater than Dthr, the hypercube cell is updated by moving its center Cm and increasing the
value of its hypercube cell distance Dcm and hypercube cell width Wdm_x and Wdm_y. The parameters
are updated using the following equations:
Fig. 4. The special case of the same distances between input data and both hypercube cells.
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Wdm xnew ¼ ðkCm x� P i xk þ Wdm xÞ=2 ð9Þ
Wdm ynew ¼ ðkCm y � P i yk þ Wdm yÞ=2 ð10Þ
Cm xnew ¼ P i x� Dm xnew ð11Þ
Cm ynew ¼ P i y � Dm ynew ð12Þ
Dcnew

m ¼ Sim=2 ð13Þ
where Cm_x is a value of the x dimension for Cm, Cm_y is a value of the y dimension for Cm, Pi_x is a value of
the x dimension for Pi, and Pi_y is a value of the y dimension for Pi, as in the cases of P2, P5, P7, and P9 shown
in Fig. 3. The algorithm returns to Step 2.

In this way, the maximum distance from any hypercube cell center to the examples that belong to this
hypercube cell is not greater than the threshold value Dthr, though the algorithm does not keep any informa-
tion on passed examples. The center and the jump positions of the receptive field functions are then defined by
the following equation:
mj ¼ Cj; j ¼ 1; 2; . . . ; n ð14Þ

hr
j ¼

1

ððns þ 1Þ=2Þ � r � Dj; r ¼ 1; 2; . . . ; ns; j ¼ 1; 2; . . . ; n ð15Þ
The threshold parameter Dthr is an important parameter in the input space partition scheme. A low threshold
value leads to the learning of fine clusters (such that many hypercube cells are generated), whereas a high
threshold value leads to the learning of coarse clusters (such that fewer hypercube cells are generated). There-
fore, the selection of the threshold value Dthr critically affects the simulation results, and the threshold value is
determined by practical experimentation or trial-and-error tests.

3.2. The parameter-learning scheme

In the parameter-learning scheme, there are four adjustable parameters (mij, rij, wm
j , and wr

j ) that need to be
tuned. The parameter-learning algorithm of the SC-FCMAC model uses the supervised gradient descent
method to modify these parameters. When we consider the single output case for clarity, our goal is to min-
imize the cost function E, defined as follows:
E ¼ 1

2
ðydðtÞ � yðtÞÞ2 ð16Þ
where yd(t) denotes the desired output at time t and y(t) denotes the actual output at time t. The parameter-
learning algorithm, based on back-propagation, is as follows.

The fuzzy weight cells are updated according to the following equations:
wm
j ðt þ 1Þ ¼ wm

j ðtÞ þ Dwm
j ð17Þ

wr
j ðt þ 1Þ ¼ wr

j ðtÞ þ Dwr
j ð18Þ
where j denotes the jth fuzzy weight cell for j = 1,2, . . . ,NL, wm
j denotes the mean of the fuzzy weights, and wr

j

denotes the variance of the fuzzy weights. The elements of the fuzzy weights are updated by the amount
Dwm
j ¼ g � e � oy

owm
j
¼ g � e �

ajwr
jPNL

j¼1ajwr
j

ð19Þ

Dwr
j ¼ g � e � oy

owr
j
¼ g � e �

ajwm
j

PNL
j¼1ajwr

j � aj
PNL

j¼1ajwm
j wr

jPNL
j¼1ajwr

j

� �2
ð20Þ
where g is the learning rate of the mean and the variance for the fuzzy weight functions between 0 and 1, and e

is the error between the desired output and the actual output, e = yd � y.



C.-Y. Lee et al. / Information Sciences 177 (2007) 264–280 271
The receptive field functions are updated according to the following equations:
mijðt þ 1Þ ¼ mijðtÞ þ Dmij ð21Þ
rijðt þ 1Þ ¼ rijðtÞ þ Drij ð22Þ
where i denotes the ith input dimension for i = 1,2, . . . ,n, mij denotes the mean of the receptive field functions,
and rij denotes the variance of the receptive field functions.

The parameters of the receptive field functions are updated by the amount
Dmij ¼ g � e � oy
oaj
� oaj

omij

¼ g � e �
wm

j wr
j

PNL
j¼1ajwr

j � wr
j

PNL
j¼1ajwm

j wr
jPNL

j¼1ajwr
j

� �2
� aj �

2ðxi � mijÞ
r2

ij
ð23Þ

Drij ¼ g � e � oy
oaj
� oaj

orij

¼ g � e �
wm

j wr
j

PNL
j¼1ajwr

j � wr
j

PNL
j¼1ajwm

j wr
jPNL

j¼1ajwr
j

� �2
� aj �

2ðxi � mijÞ2

r3
ij

ð24Þ
where g is the learning rate of the mean and the variance for the receptive field functions.

4. Simulation results

In this section, we compare the performance of the SC-FCMAC model with other models in three appli-
cations: learning chaotic behaviors [39], classifying Iris data sets [8], and controlling the truck backer-upper
[31].

4.1. Example 1: Learning chaotic behaviors

A nonlinear system y(t) with chaotic behaviors is given in the equations below:
_x1ðtÞ ¼ �x1ðtÞx2
2ðtÞ þ 0:999þ 0:42 cosð1:75tÞ ð25Þ

_x2ðtÞ ¼ x1ðtÞx2
2ðtÞ � x2ðtÞ ð26Þ

yðtÞ ¼ sinðx1ðtÞ þ x2ðtÞÞ ð27Þ
We solved the differential equations (25) and (26) with t from t = 0 to t = 20 and with x1(0) = 1.0 and
x2(0) = 1.0. We obtained 107 values of x1(t) and x2(t) (the chaotic glycolytic oscillator [35]) and 107 values
of y(t). Fig. 5 shows y(t), which is the desired function to be learned by the SC-FCMAC model.

The input data were xp
1ðtÞ and xp

2ðtÞ, and the output data was yp(t), for p = 1,2, . . . , 107. For this chaotic
problem, the initial parameters g = 0.1 and Dthr = 1.3 were chosen. First, using the SCA clustering method,
we obtained three hypercube cells. The learning scheme then entered parameter learning using the back-prop-
agation algorithm. The parameter training process continued for 200 epochs, and the final trained root mean
square (rms) error was 0.000474. The number of training epochs is determined by practical experimentation or
trial-and-error tests.

We compared the SC-FCMAC model with other models [26,27]. Fig. 6(a) shows the learning curves of the
SC-FCMAC model, the FCMAC model [26], and the SCFNN model [27]. As shown in this figure, the learning
curve that resulted from our method has a lower rms error. Trajectories of the desired output y(t) and the SC-
FCMAC model’s output are shown in Fig. 6(b)–(d). A comparison analysis of the SC-FCMAC model, the
FCMAC model [26], and the SCFNN model [27] is presented in Table 1. It can be concluded that the pro-
posed model obtains better results than some of the other existing models [26,27].



Fig. 5. y(t) = sin[x1(t) + x2(t)].
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4.2. Example 2: Classification of Iris data

The Iris data set [8] consisted of 150 patterns associated with three output species – Iris Sestosa, Iris Ver-
siolor, and Iris Virginica. Each species contained 50 cases. Each pattern comprised four input features – sepal
length, sepal width, petal length, and petal width. The output y of the SC-FCMAC model was used to apply
the following classification rule:
Iris ¼
Sestosa if y < �0:5

Versiolor if � 0:5 6 y 6 0:5

Virginica if y > 0:5

8><
>: ð28Þ
The initial parameters g = 0.01 and Dthr = 3.1 were chosen to solve this classification problem. The exper-
iment was repeated for 10 train-test data sets generated randomly from the original 150 Iris data. In each
experiment, 25 instances of each species were randomly selected as the training set (a total of 75 training pat-
terns were used) and the remaining instances were used as the testing set. The average number of hypercube
cells was three.

Table 2 shows the results obtained using the 10 data sets in independent runs. The average training and
testing accuracy rates obtained using the SC-FCMAC model were 99.7% and 97.04%. Cross validation was
performed to check the performance of the proposed classifier. The results demonstrate that the proposed
SC-FCMAC model yields similar average testing accuracy rates.

The performance of the proposed model was compared with that of other methods (CMAC [2], self-orga-
nizing HCMAC [22], and FCMAC [26]). The performance indices considered were the rms, the average train-
ing accuracy, the average testing accuracy, and the required memory. Table 3 presents a comparison of the
results. The average testing accuracy rate of the presented method is higher and the mean memory requirement
is lower (only about 30).

Several classification methods were compared with the proposed SC-FCMAC model in their application to
the Iris data classification problem. Hisao Ishibuchi [16] considered the performance of 11 classification meth-
ods (70% training patterns and 30% testing patterns) and nine classification methods (50% training patterns



Fig. 6. Simulation results for learning chaotic behaviors. (a) Learning curves of the SC-FCMAC model, the FCMAC model [26], and the
SCFNN model [27]. (b) The desired output y(t) and the SC-FCMAC model’s output for time t dimension. (c) The desired output y(t) and
the SC-FCMAC model’s output for x1(t) dimension. (d) The desired output y(t) and the SC-FCMAC model’s output for x2(t) dimension.
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and 50% testing patterns) when they were applied to the Iris data. This work considers a case of only 50%
training patterns and 50% testing patterns. Table 4 provides the testing accuracy rates of other models
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reported by Hisao Ishibuchi [16]. The proposed SC-FCMAC model provides the most accurate classification
when applied to the Iris data in the random resampling procedure.



Table 1
Comparisons of the SC-FCMAC model with some existing models for dynamic system identification in Example 1

Items Models

SC-FCMAC FCMAC [26] SCFNN [27]

Training steps 200 200 200
Parameters 18 18 20
Hypercube cells 3 4 N/A
RMS errors 0.000474 0.000885 0.000908

Table 2
Simulation results for independent runs

Experiment #

1 2 3 4 5 6 7 8 9 10 Average

Testing accuracy (%) 97.3 97.3 97.3 97.3 96 97.3 96 97.3 97.3 97.3 97.04

Table 3
Simulation results on Iris data

Models Items

RMS Averaged training accuracy (%) Averaged testing accuracy (%) Memory requirement

CMAC [2] 0.014 99.7 95.7 9375
Self-organizing HCMAC [22] 0.014 99.6 96.8 555
FCMAC [26] 0.012 99.7 96.91 30
SC-FCMAC 0.012 99.7 97.04 30

Table 4
Classification accuracy of various methods on Iris data [16]

Classification methods Testing accuracy rates (%)

Fuzzy integral with percetron criterion 95.3
Fuzzy integral with quadratic criterion 96.7
Minimum operator 96
Fast heuristic search with Sugeno integral 92
Simulated annealing with Sugeno integral 91.3
Fuzzy K-nearest neighbor 96.7
Fuzzy C-means 93.3
Fuzzy C-means for histograms 93.3
Hierarchical fuzzy C-means 95.3
Neural networks with the BP algorithm 96.7
SC-FCMAC 97.04
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4.3. Example 3: Control for backing up the truck

Backing up a truck to a loading dock is difficult. It is a nonlinear control problem for which no tradi-
tional control methods exist [20,31]. The objective of this control problem was to use the backward motion
of the truck to make the truck arrive at the loading dock at a right angle (/desired = 90�) and to position
the truck at the desired loading dock (xdesired,ydesired). The truck moves backward a fixed distance (df) accord-
ing to how much the steering wheel turns at every step. The loading region was limited to the plane
[0,1 00] · [0,100].
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The input and output variables of the SC-FCMAC model must be specified. The model has two inputs, the
truck angle / and the cross position x. If enough clearance between the truck and the loading dock is assumed,
Fig. 7. The moving trajectories of the truck where the solid curves represent the six sets of training trajectories and the dashed curves
represent the moving trajectories of the truck under the learned SC-FCMAC controller.

Fig. 8. Learning curves of some existing models in Example 3.



Fig. 9. Truck moving trajectories starting at three different initial positions under the control of the SC-FCMAC model after learning six
sets of training trajectories. The initial positions (x,y,/) = (a) (40,20,�30�), (b) (10,20,�30�), and (c) (30,20,�250�).
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the y coordinate is not considered to be an input variable. The output of the model is the steering angle h. The
ranges of the variables x, / and h are as follows:



Fig. 9 (continued)
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0 6 x 6 100 ð29Þ
� 90� 6 / 6 270� ð30Þ
� 30� 6 h 6 30� ð31Þ
The equations of the backward motion of the truck are given by
xðk þ 1Þ ¼ xðkÞ þ d f cos hðkÞ þ cos /ðkÞ
yðk þ 1Þ ¼ yðkÞ þ d f cos hðkÞ þ sin /ðkÞ

/ðk þ 1Þ ¼ tan�1 l sin /ðkÞ þ d f cos /ðkÞ sin hðkÞ
l cos /� d f sin /ðkÞ sin hðkÞ

� � ð32Þ
where l is the length of the truck. Eq. (32) is used to obtain the next state when the present state is given.
For the purpose of training the SC-FCMAC model, learning takes place during several different tries, each

try starting from an initial state and terminating when the desired state is reached. In our simulation, six dif-
ferent initial positions of the truck were chosen. The six training paths are shown in Fig. 7. The truck moved a
small fixed distance df = 1.6 at every step and the length of the truck was set to be l = 1. The initial parameters
g = 0.1 and Dthr = 80 were chosen.

First, using the SCA clustering method, we obtained 12 hypercube cells. The learning scheme then entered
parameter learning using the gradient descent method. The parameter training process continued for 200
epochs. In each epoch, all the six sets of the training trajectories were presented once to the SC-FCMAC
model in a random order. The final rms error of the SC-FCMAC model approximated 0.0316. In Fig. 7,
the solid curves are the training paths and the dotted curves are the paths that the tuck moves under the con-
trol of the learned controller. As this figure shown, the SC-FCMAC controller can smooth the training paths.

We also compared the SC-FCMAC model with some of the other existing models [25,26,32]. The learning
curves of the other models are shown in Fig. 8. Fig. 9(a)–(c) shows the trajectories of the truck moving and
controlled by the SC-FCMAC model, starting from the three different initial positions (x,y,/) = (a)
(40,20,�30�), (b) (10, 20,�30�), and (c) (30, 20,�250�).



Table 5
Performance comparison of various models in Example 3

Items Models

SC-FCMAC FCMAC [26] CNFN [25] Neural networksa Neuro-fuzzy [32]

Training steps 200 200 200 200 200
Parameters 72 108 91 75 175
Hypercube cells 12 18 13 N/A 35
RMS errors 0.0316 0.0463 0.0449 0.0978 0.0924

a The number of hidden node is 25.
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We now compare the performance of the SC-FCMAC model with some of the other existing models
[25,26,32]. The performance indices considered include training steps, hypercube cells, and rms error. The
comparison results are tabulated in Table 5. The results show that the proposed SC-FCMAC model has smal-
ler rms errors and fewer hypercube cells than some of the other existing methods [25,26,32].

5. Conclusion

In this paper, a self-constructing FCMAC (SC-FCMAC) model was proposed for solving control, identi-
fication, and classification problems. A self-constructing learning algorithm was presented for constructing
and adjusting the parameters. The proposed algorithm uses the self-clustering method (SCM) to perform input
space partitioning and the back-propagation algorithm to perform parameter learning. The advantages of the
proposed SC-FCMAC model are summarized as follows: (1) it implements scatter partitioning of the input
space dynamically; (2) it results in a smaller rms error; and (3) it has a much lower memory requirement. Sim-
ulation results demonstrate that the proposed SC-FCMAC model outperforms some of the other existing
models.
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